
Sarma White Paper 
by Jordan Stojanovski

Executive Summary 
Sarma introduces a groundbreaking solution for private transactions within the Ethereum 
Virtual Machine (EVM), leveraging Zero Knowledge (ZK) proofs for secure and private data 
movement across EVM blockchains. Our technology, which utilizes the encrypted data 
structure 'Sarma'—akin to Aleo's 'record'—enables private smart contract interactions without 
relinquishing the security and transparency of public blockchains. This innovation addresses 
significant privacy challenges in blockchain applications, enhancing both security and usability, 
making Sarma a pioneering solution in the realm of blockchain privacy and cross-chain 
functionality. 


Importantly, Sarma can also travel cross-chain, enhancing bridge security by concealing the 
nature of the data being transferred, thereby significantly boosting overall blockchain 
interoperability and privacy. 


Looking ahead, Sarma aims to implement idempotent transitions, allowing Sarmas to be 
managed off-chain effectively, significantly reducing on-chain storage needs and optimizing 
transactional efficiency. This innovative approach ensures that only the final results need to be 
stored, enhancing scalability and privacy across transactions.


Business Model 
Initially, Sarma will be introduced as a library, enabling software developers to integrate 
privacy-enhanced features into their applications. This approach facilitates broad adoption 
across various sectors by leveraging developers' existing expertise and infrastructure. 


In the subsequent phase, the Sarma project will transition to a profit-making model through the 
integration of specialized code into Ethereum Virtual Machine pre-compiles. These pre-
compiles, once deployed across different blockchains, will enhance the efficiency of on-chain 
verifications, reducing costs and speeding up transactions. The revenue from these operations 
will be derived from gas rebates, shared with the deploying blockchains and their validators, 
thereby creating a sustainable economic model that benefits all parties involved.


As Sarma's technology matures and integrates specialized pre-compiles into the Ethereum 
Virtual Machine, the applications built using the Sarma library will automatically become faster 
and less expensive to operate. This improvement occurs without any additional development 
effort from their creators, enhancing both the accessibility and economic efficiency of 
deploying privacy-focused applications on blockchain platforms.


Market Analysis 
The landscape for privacy-focused blockchain projects is robust, with significant investments 
reaching into the hundreds of millions allocated to similar initiatives such as Aleo, Aztec, and 
Mina. Unlike Mina and Aleo, which are developing independent Layer 1 blockchains, and 
Aztec, which is building a Layer 2 solution connected to Ethereum's Layer 1, Sarma uniquely 



capitalizes on existing open-source Zero Knowledge proof systems like Noir, Circom, Halo3, 
Zokrates, and Mina. This approach allows Sarma to integrate directly with EVM blockchains, 
providing a seamless transition for the extensive pool of Solidity developers. Sarma's strategy 
reduces the learning curve significantly, positioning it as a readily accessible solution that could 
potentially expedite deployment compared to its competitors.


Sarma's strategic use of existing technologies not only simplifies the development process but 
may also accelerate its deployment relative to other projects like Aztec and Aleo. Its 
straightforward integration with established Zero Knowledge proof systems enhances its 
feasibility, potentially enabling Sarma to be operational ahead of these more complex 
initiatives.


Technical Details 
Introduction 
In the Ethereum blockchain and its Ethereum Virtual Machine (EVM) all data is public. However, 
many use cases require private transactions where the data passed from Smart Contract call to 
another is private and stored privately on-chain. Various privacy blockchains have emerged, 
achieving this feature, of which most notable are Aleo, Aztec and Mina (in alphabetical order). 
They utilize Cryptographic Zero Knowledge techniques to achieve this. Despite their 
remarkable achievements, they do not leverage on the existing EVM Solidity code base but rely 
on cross-chain or layer 2 transfers into the "private" realm. 


Sarma is leveraging on the Aleo and Noir (by Aztec) to create private transaction and private 
address ability without leaving the EVM.


Aleo has achieved the public/private duality using an extremely simple primitive called Record. 
The record is an encrypted struct owned by a specific user, visible only to that user. Their 
Leo domain-specific programming language has functions with 2 parts:

• transition, which creates a ZK proof, which is checked on-chain. In it, the records are 

visible. 

• finalize, which after verifying the proof created by the transition it executes public 

code in which the records are not visible unless parts of them are revealed as public inputs 
in the ZK proof created in the transition.


The record in Aleo resembles an Unspent Transaction Output (UTXO) in Bitcoin, but it can 
contain anything, not just tokens/assets. Any

information that needs privacy.


To re-confirm the validity of this idea, the upcoming Aztec Layer 2 blockchain is using a very 
similar technique.


Verifying ZK proofs can be done on-chain on the EVM. However, storing private data on-chain 
is implemented in Aleo, as they control the code base. But Sarma does not control the EVM 
code base, and the following section explains its implementation.


Solution - the Sarma 



The Sarma rules


The Sarma corresponds to an Aleo record. To the EVM it's an encrypted blob of data, that the 
EVM can only move around, without knowing what is in it. Yet, it is not just a blob, because the 
EVM Smart Contract needs a permission to move this blob, which is governed by a verification 
of a ZK proof created off-chain. What is the condition, is up to the application developer.


As usual, the public execution is performed by the EVM Smart Contracts, which associate data 
to public addresses (accounts).


The private part is completely separate:

• Callers usually have private addresses (public keys). They exchange the public keys between 

each other privately, in secret from the other participants.

• All information processing is done inside of the ZK proof. In order to move the Sarmas 

around, the Solidity part has to get the permission by verifying the ZK proof on-chain as a 
require statement.


• The communication channel between the public and private 

parts of the code is the set of public inputs in the ZK proof.


Sarma exchange between callers


Even though the Sarma is not visible by the EVM, it can be decrypted off-chain and verified 
inside the ZK proof. For this we need to 

• be able to hand over and encrypt/decrypt the Sarma from one user to another, where the 

users know only each other's public keys of their private addresses,

• be able to do the above non-interactively,

• the Sarma should remain encrypted (invisible) to all other participants.


Luckily, El Gamal encryption achieves this. Each Sarma creator

encrypts the Sarma with the public key of the recipient.

These participants do not need to communicate with each other to exchange the information 
which is otherwise invisible to all others.


To hand over the Sarma,

• The sender encrypts the Sarma using recipient's public key.

• The recipient, without communicating to the sender, decrypts the Sarma using his private 

key.


The recipient can decrypt the Sarma at any time, but cannot own it until the EVM Smart 
Contract hands it over to him, in terms of programmable logic.


Cross-chain Sarma Transfers


While Aleo is a single Layer 1 blockchain, bridges need to be developed to transfer messages 
(thus assets) to other blockchains. 




Aztec is a Layer 2 blockchain which relies on its sequencer to transfer messages (thus assets) 
to Layer 1 (Ethereum). 


With Sarma, many cross-chain EVM solutions already exist, with proven track record of safety 
and audits. Namely, the Sarma can travel cross-chain using any of these bridges.


In addition, the Sarma makes the cross-chain bridges safer, as they do not know what they are 
transferring, making them immune to bribery.


Implementation 

Application developer's perspective


The public part of the Smart Contracts can be written in Solidity. Sarma only provides the 
contract SarmaManager which manages the lifetime of the Sarmas. The SolidityDeveloper can 
simply subclass this contract and create Sarmas using

 createSarma or destroy/spend them using destroySarma. The Solidity contract should 
import the

 zk verifiers written in Noir and require(verify(...))

 on each sarma in order to enforce the conditions stated in the ZK proof written in Noir.


The private part of the Smart Contract can be written in Noir, as long as the library isSarma 
function is called to place the constraints that the public input Sarma has to comply with. In 
addition, besides calling isSarma, the developer can put constraints that shape other logic.


Knowing Solidity and Noir, and JavaScript for the front-end, the developers can already use 
Sarma to achieve private addresses and transactions on EVM and across EVMs and write such 
Web3 applications.


What is inside?


The private key of the private address is a randomly generated point on the elliptic curve. The 
public key of the private address can be calculated from it, and sent to other participants or 
broadcasted.


The Sarma is created on the client side, encrypted with the intended recipient's public key. This 
encryption has to be checked (as constraint) in the ZK proof by calling isSarma(...), to 
make sure it's a valid Sarma.


The EVM Smart Contract whenever touching the Sarma would have to call verify(...) 
which calls verification function of the ZK proof generated by the Noir's Nargo utility. 


Off-chain Sarmas - Idempotent Sarma Transitions 

An Idempotent transition :
T






Stretching the above definition recursively as Eventual Idempotency, stating that a repetition of 
the transition in a sequence, does not change anything if one of the operations in the sequence 
is repeated anywhere in the sequence.


Why is this interesting? Using Sarma Transitions that are Idempotent, the intermediate Sarmas 
do not even need to be stored on the EVM - just the final result. 


Example: Voting. Let's count the votes for a certain outcome by storing them in a Sparse 
Merkle Tree (SMT), and produce a recursive proof that the new voter was not in the tree, so he 
cannot vote twice. We do not need to make the constraints such that the proof fails if the voter 
tries to vote twice. Instead, we let them vote twice, but the resulting SMT to be the same as if 
the voter voted once. Yet, allow the proof to succeed by shaping the constraints properly. If the 
root of this SMT is recorded in a Sarma at the beginning we would not need to record the 
Sarmas on-chain each time - only at the end.


Proving Idempotency is hard, but enforcing is not. So, to implement this, one Noir function call 
would contain an check of Idempotency after the fact. If it passes, no Sarma is recorded on-
chain, unless the user "insists". This would not be a constraint, but merely a "shortcut".


Development Roadmap 
First Six Months: Development of the initial usable version of Sarma, alongside a couple of 
sample applications to demonstrate functionality.


Next Six Months: Creation of a comprehensive framework of tools designed to simplify the 
development process. This includes tools for generating basic applications from templates, 
debugging tools, and additional sample applications. This phase prepares Sarma for broader 
developer adoption.


Marketing Phase: Begin marketing efforts by producing educational materials and 
participating in conferences and hackathons to engage with potential users and developers.


Subsequent Development: Focus on developing the off-chain Sarma subsystem.


Further Development: Focus on developing and integrating EVM verification pre-compiles, 
which will be marketed to various Layer 2 blockchains.


Long-Term Expansion: Expand the scope of Sarma to incorporate other languages like Mina 
PlonkyJS, Circom, Zokrates, Halo3, and others, broadening the technology's applicability and 
reach.


Case Studies or Use Cases 
The realm of Zero Knowledge (ZK) applications is broad and continually evolving. We will 
highlight a few common application patterns to showcase the versatility of Sarma. These use 
cases demonstrate the potential of Sarma to enhance privacy and security across various 
industries:


∀x : T (T (x, y), y) = T (x, y)



Financial Privacy 
Sarma can facilitate private financial transactions, ensuring that details of asset transfers 
remain confidential while maintaining the integrity of transaction verification. In addition, 
compliance features and tools can be built as part of 

these systems to prevent unethical and illicit usage.


Voting Systems 
Employing Sarma for voting systems can ensure that votes are cast anonymously and securely, 
protecting voter privacy and preventing duplicate votes. Off-chain Sarmas can be used to 
achieve private voting by massive populations, such as 

referendums in large countries. 


Supply Chain Management 
In supply chains, Sarma can be used to maintain privacy of sensitive data while ensuring that 
all parties meet compliance and operational standards.


Confidentiality in Business Processes 
Sarma can help businesses leverage privacy to cooperate without disclosing sensitive data 
and confidential intellectual property to other businesses and/or the public.


Incorruptible Decentralized Systems 
Leveraging Sarma, decentralized systems and protocols can be built, which achieve better 
immunity to corruption and bribery.

One such protocol could be a Dark Optimistic Oracle, in which assertions can be disputed by 
anonymous parties, and resolution

voting can be performed by anonymous participants, incentivized anonymously, thus leaving 
the bad actors with no information

about "who to bribe" and whether there are any effects of such bribery.


Team and Advisory Board 
Initially the founder Jordan Stojanovski is involved in fundraising and development of the

first usable version.


Jordan Stojanovski has extensive software development experience and has won major 
prizes at numerous global competitions

in the areas of Blockchain Development, Decentralized Finance (DeFi) and Zero Knowledge 
applications. Sarma was conceived and

prototyped by Jordan at one such competition (hackathon), wining numerous awards/prizes.


In the nearest future, we are seeking team members and advisors for:

• Advisory board.

• Fundraising.

• Marketing.

• Research and Development.

• Testing.

• Operations.




Legal and Regulatory Considerations 
As Sarma navigates the complex landscape of blockchain technology, understanding and 
adhering to global legal and regulatory frameworks is crucial. The project must allow for 
development of applications which comply with data privacy laws such as GDPR in the EU, 
which might affect how personal data is handled, even in encrypted forms. Moreover, the use 
of blockchain for financial transactions requires observance of anti-money laundering (AML) 
and know your customer (KYC) regulations. Regular consultations with legal experts in 
blockchain and data privacy laws will be essential to adapt to the evolving regulatory 
environment and ensure compliance. This proactive approach will help mitigate legal risks and 
foster a trustworthy platform for users and investors alike.


Risk Analysis 
Regulatory Risk: Sarma operates in a rapidly evolving regulatory environment. Adhering to 
international regulations such as GDPR and AML/KYC standards is crucial. Choosing the 
appropriate jurisdictions and investors who understand and navigate these complexities will be 
vital to mitigate legal and operational risks.


Competition Risk: The blockchain privacy sector is highly competitive, with several 
established and emerging technologies like Aleo, Aztec, and Mina. Maintaining technological 
superiority and innovating continuously are necessary to stay ahead.


Adoption Risk: The success of Sarma hinges on its adoption by developers and acceptance 
by users. There's a risk that the complexity of ZK proofs or resistance to new technologies 
might hinder widespread adoption. Strategic marketing and robust developer support are 
essential to overcoming these challenges.


Appendices 
Appendix 1: Frequently Asked Questions 
Q: The Sarmas are associated with addresses, does not this break the privacy? 

A: Not at all. The public execution can be called by public addresses, but the private addresses 
do not have to be associated to them. In addition, the public Solidity code can "mint" Sarmas 
seemingly "out of thin air", but the private Noir code governs the validity of the program logic, 
as long as the Solidity code verifies the Sarma by calling verify.


Q: What does Sarma mean?

A: Sarma was conceived at the ETHGlobal Istanbul 2023 hackathon. In Turkish "sarma" means 
"wrapping". We use the term to denote an encrypted controlled record. In Macedonian (the 
word coming from the Ottoman Empire) "sarma" ("сарма") is a tasty dish made of rice and 
meat wrapped in pickled cabbage leaves.


Q: Is the execution of Sarma fast?

A: Yes, there is no on-chain proving, thus no on-chain heavy computation. Only verifications 
occur on-chain, and there is a helpful pre-compile already in most EVMs to make the 
verification fast. Executing a small amount of public code is faster, but for private transactions, 



as the code is executed off-chain, the execution happens in constant time and cost, regardless 
of the amount of calculations.


Q: How come we do not need a tree to store the Sarmas, as Aleo stores its "records" in a 
Sparse Merkle Tree?

A: The Sarmas are stored and governed by the EVM Smart Contract. The EVM is responsible 
for storing them. However, in order to hide the Sarmas the private and the public address 
spaces are separated. Even though the movement of Sarmas can be observed, the EVM Smart 
Contract acts as a "mule" and does know what it is moving. In addition to this, each function 
call to the EVM Smart Contract can be performed from a different address (EOA). Actually 
some knowledge about the Sarma movements is revealed, but this knowledge is useless and 
thus irrelevant.


Q: Are private applications illegal or unethical?

A: Not if they are written for a good cause. For example, secret voting gives privacy to the 
voters in order to protect them

from targeting or persecution. Secret optimistic oracles achieve better immunity against 
resolution voter corruption.


Q: Is Sarma a tool for evading financial compliance?

A: No, Sarma is merely a technological infrastructure, just like Zero Knowledge proof systems 
and other cryptography tools. It is up to the application developer to make sure the product 
they build complies with ethics, rules and laws. For example Zero Knowledge mixers can be 
used for illicit fund transfers as well as legitimate privacy purposes (one would not want to

reveal all account balances and transactions upon each purchase, as this would attract 
potential criminals and other predatory actors). However, the developer can implement a 
legitimate mixer with "reveal key" feature, so upon request by law enforcement, the user can 
clear demonstrate legitimacy by revealing the transactions only to the authorities and not

to other "prying eyes". Such privacy mixer, may be even built to seek pre-approval from legal 
authorities prior to usage.


Appendix 2: References 
• ETHGlobal Istanbul 2023 hackathon project "Sarma" where it was conceived and prototyped: 

https://ethglobal.com/showcase/sarma-evm-zkevm-pexc-9wp7o


• ETHGlobal Istanbul 2023 finalist presentation where "Sarma" was presented and awarded: 
https://www.youtube.com/watch?t=2609&v=RW6qZTEIqWc&feature=youtu.be


• Aztec Noir documentation: https://noir-lang.org/docs/


• ZEXE articles: https://medium.com/zeroknowledge/what-is-zexe-part-i-5fd27b8dcf96, 
https://medium.com/zeroknowledge/what-is-zexe-part-ii-bb24b560aebd, https://
medium.com/zeroknowledge/what-is-zexe-part-iii-a5515483bbeb


• ZEXE paper: https://eprint.iacr.org/2018/962.pdf



	Executive Summary
	Business Model
	Market Analysis
	Technical Details
	Development Roadmap
	Case Studies or Use Cases
	Team and Advisory Board
	Legal and Regulatory Considerations
	Risk Analysis
	Appendices

